Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Testing & Analysis

Yokohama develops technology to evaluate water absorption in winter tires

Rachel EvansBy Rachel Evans3rd October 20183 Mins Read
Share LinkedIn Twitter Facebook Email

In a joint research project with the tribology laboratory at the College of Science and Engineering at Kanazawa University in Japan, Yokohama has developed an evaluation technology that visualizes a rubber’s frictional state of contact on an icy surface (image of a tire in motion).

The technology will enable the discovery of new compounding agents with excellent water absorbency and facilitate more precise development of tread patterns that have a higher drainage performance. Ultimately this will enable the development of winter tires with a dramatically improved ice performance.

When running on ice, the tire’s inability to make firm contact with the road surface due to the watery film generated by the icy surface reduces the tire’s grip. Studless snow tires use water absorbing agents and tread patterns with high drainage performance to counter the watery film. However, when observing a tire’s contact with the road, it has been difficult to distinguish the area where water is between the road surface and the rubber from the area where the rubber is in direct contact with the road surface (real contact area). As a result it has been difficult to accurately grasp the degree of real contact.

Engineers at Yokohama and the university developed a specialized testing machine equipped with a high-speed camera that enables visualization of the tires’ contact with the ground and succeeds in identifying the real contact area. Furthermore, by establishing an analytical technique for digitizing contact images, engineers succeeded in numerically evaluating the water absorbency and drainage of tire rubber.

The test system is able to directly observe frictional behavior between a rubber sample and ice or a smooth transparent disk used to replicate ice at speeds of up to 50km/h. Its high-speed camera can take one million micro-level images per second of the tire rubber’s contact area with the road surface. It also can simultaneously measure the frictional force during the test.

Images taken with the testing machine are dark only in the real contact area. Rubber that includes a water-absorbing agent shows darkness over a wider area than rubber that does not include the water-absorbing agent.

Furthermore, as a result of digitizing the image with the newly developed analytical technique to associate the contact area with the frictional force, it was revealed that the calculated numerical value has a high correlation with the frictional force of the rubber.

Yokohama Rubber is using the new technology widely in its development of winter tires, from studless snow tires for Japan to winter tires for the European market and all-season products.

Yokohama develops technology to evaluate water absorption in winter tires1a Image of contact area taken by specialized testing machine (Rubber with water-absorbing agent and rubber w/o water-absorbing agent)

Yokohama develops technology to evaluate water absorption in winter tires1b While the rubber not including a water-absorbing agent has few black spots (real contact area), indicating little direct contact between tire and road surface, the rubber including a water-absorbing agent has many more black spots, which clearly shows the expansion of real contact achieved by the use of the water-absorbing agent.

Share. Twitter LinkedIn Facebook Email
Previous ArticleTire Technology Expo Conference Q&A: Dr Reza Limoochi, Iran Tire Co.
Next Article Marangoni Tread Latino America obtains InMetro certification

Related Posts

Research & Development

Nexen Tire establishes winter tire testing center in Finland

11th April 20253 Mins Read
Testing & Analysis

Koala Technologies launches Te.Sense Bloom tire deflation testing solution in new markets

20th March 20254 Mins Read
Simulation

Bridgestone advances virtual tire development with its driving simulator

4th February 20252 Mins Read
Latest News

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Volkswagen chooses Vredestein winter tire as OE for Tiguan SUV

12th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • KraussMaffei Extrusion GmbH
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by