Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Features

Prediction without verification = uncertainty

Bay SystemsBy Bay Systems8th October 20203 Mins Read
Share LinkedIn Twitter Facebook Email

Tire development increasingly uses analytic modeling tools to evaluate choices and guide a program. Here, modeling and simulation specialist Bay Systems explains the importance of verification in this process.

Models generate predictions where accuracy rests upon the quality of the model and the accuracy of the input data. Before a model can be used to develop a product the model itself must be developed and validated. The validation and updating of a model is completed using test results obtained from production tires, ideally running on real road surfaces. Once the model has been validated against a series of production tires it is fit for use in new product development.

Modeled predictions will always diverge from operational reality at some point due to an incomplete understanding of the system. For example: how materials properties change with age, how the product is really built, or how it is being used on a day to day basis.

Carefully designed and executed testing at each stage of model development will provide the essential feedback and improve prediction accuracy. To complete this virtuous circle the test data must capture the factors that govern performance for real rather than idealized operating conditions. If measurements are difficult to make the temptation is to measure a related parameter and apply some offset compensation, often based on engineering judgement. This amounts to using a model, of some kind, to correct another model. This is at best a dubious proposition and once embarked upon encourages further use of ‘Fudge Factors’.

In our research into the mechanisms affecting tire noise, vibration and energy dissipation the first obstacle was the lack of sensors that directly measured the parameters of interest. We therefore developed the Tyre Cavity Microphone (TCM), Accelerometer (TCA) and Thermometer (TCT), enabling accurate data to be acquired for tires running in the laboratory and on the test track. We wanted to understand the differences between measurements made in the laboratory, test track and public road. If these differences could be quantified and understood, then some laboratory-based measurements might be usable in the updating process. Laboratory measurements were acknowledged to be more reproducible and easier to make but these advantages are of little use if the data diverges from reality.


The Tyre Cavity module sensor systems were developed primarily for the test cell with the capability to be used on the test track and highway, legislation permitting. Accuracy was established through careful design and calibration over the full operating range; re-calibration is performed before delivery, as a final check. The TCA development revealed the sensitivity of acceleration data to the accelerometer/tire liner attachment technique, the optimal attachment was found and the improvement in the recorded signal is shown in Figure 1 (top).

During the TCT development, the expected correlation between rolling resistance measurements and the tire liner temperature was observed. However, for a very energy-efficient tire the temperature profile was uniform across the crown and around the tire shoulders. This tire was not the coolest running tire that we measured but it was the most efficient by a wide margin. We concluded that achieving a low average temperature in a tire carcass would not necessarily result in a very low energy dissipation particularly if the temperature profile was uneven, see Figure 2 (below). This result implies that achieving a uniform stress over crown, shoulder and upper sidewall will deliver a low rate of energy dissipation.

Since the early work in 2010, the TCM, TCA and TCT sensor systems have been used by more than 20 tire and vehicle companies and are available for sale and lease for Bay Systems.

Share. Twitter LinkedIn Facebook Email
Previous ArticleNexen Tire uses AI and big data to cut tire noise
Next Article In this Issue – October 2020

Related Posts

Features

Sponsored: Wipotec’s advanced quality control sets new standards in tire manufacturing

24th February 20254 Mins Read
Features

Interview: Claire Fioretti, head of standards and regulations for connected mobility, Michelin

13th February 20257 Mins Read
Features

Interview: Goodyear’s Kanwar Bharat Singh on revolutionizing road perception for autonomous driving

27th January 20254 Mins Read
Latest News

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Volkswagen chooses Vredestein winter tire as OE for Tiguan SUV

12th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • HollyFrontier Specialty Products
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by