Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Opinion

Measuring friction

Gregory SmithBy Gregory Smith12th July 20164 Mins Read
Share LinkedIn Twitter Facebook Email

Friction is commonly misunderstood and is deceptively challenging to get to grips with. Firstly, friction is an interaction between two surfaces, not just one. So it’s incorrect to say, “This tire is grippier than that one,” as grip is dependent on both the tire and the road.

So while on dry asphalt this particular trackday tire may well be grippier than that all-season tire, if you change the asphalt to ice then this may no longer be the case. Furthermore, the actual level of grip is sensitive to just about everything. Vertical load, size of contact area, roughness of each surface, road materials, tire compound, sliding velocity and temperature of each surface, among many other factors, all influence the level of grip between a tire and the road.

So what’s going on? Well, the truth is, the real physics of friction occurs at a molecular level and is almost impossible to calculate. Let’s look at contact area for instance, one of the variables that affects friction. Determining the actual contact area between the tire and the road is almost impossible. Even if we assume that all the tire and road properties are known (which is not a trivial assumption), then when you consider the road surface contains peaks and troughs, the tire rubber will partly, but not completely, fill those troughs.

The amount the tire sinks into the troughs will affect the true contact area over that square centimeter of surface. With enough computer power, this could be physically modeled using finite element analysis of the deformable rubber.

However, the exact same phenomenon occurs when we zoom in to look at square millimeters, or zoom in further and look at a microscopic level where again there are peaks and troughs and the rubber will partly fill some, but not all, of the microscopic troughs. Finite element modeling at this level would require the mesh size to be almost atomically small, which is far beyond what is practical. Add to this the effort required to map a sensibly sized section of road surface along with handling contaminates such as movable stones, dust, leaves, etc, and you are heading for a dead end.

Unfortunately, what’s happening at this level cannot be written off as chasing the last word in accuracy, as the effect at this atomic level is multiplied billions of times to cover the whole contact patch, creating a significant net effect on the tire. The more you zoom in, the smaller the microscopic effect but the larger the multiplier gets to determine the total effect at a tire level. The result of this is surprising, and according to acclaimed physicist and friction expert Dr Bo Persson, “The true contact area covers only a fraction of the geometrical surface visible to the naked eye – typically just a few percent.” (Tire Technology International, October 2013, p34). This means that you may think of a tire’s contact patch as being about the size of your hand, whereas in fact it’s about the size of a fingernail.

With a true physical calculation of friction from first principles requiring data and analysis at an atomic level, it can be ruled out as a viable commercial option. Instead, a far more practical approach to determining the net effect of all the complex friction phenomena is to simply do an experiment and measure it. An empirical model can then be built to reproduce the measured results.

Unfortunately, measuring friction explicitly is also difficult. Tire tread can be cut up and mounted to various types of friction testers; however, most of these cannot match the vertical load the tire would be subjected to when mounted to a vehicle and even less can apply and maintain the required sliding velocity. Therefore, tire friction testing is usually carried out implicitly at a full-scale tire level, using Flat-Trac rigs or similar.

The downside of this is that a physical tire is required. However, while being less elegant, it is this empirical build, test, model, approach that is the principle behind most of the tire models commonly used for handling simulations.

Share. Twitter LinkedIn Facebook Email
Previous ArticleIn this Issue – Annual Showcase 2016
Next Article New director of replacement tire sales at Bridgestone Europe

Related Posts

Opinion

OPINION: Extending tire life with smarter tech – a new chapter for SUVs

2nd May 20255 Mins Read
Opinion

OPINION: EU regulations boost demand for tire-derived pyrolysis oil in chemical recycling

13th March 20255 Mins Read
Opinion

OPINION: Joe Walter recalls his first encounter with TTI

12th December 20235 Mins Read
Latest News

Uniroyal launches AllSeasonExpert 3 tire for rain, snow and dry roads

16th May 2025

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Erhardt+Leimer GmbH
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by