Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Opinion

A sense of purpose

Gregory SmithBy Gregory Smith16th January 20184 Mins Read
Share LinkedIn Twitter Facebook Email
Gregory Smith

TTI‘s resident columnist Gregory Smith considers how multi-axis accelerometers could be beneficial in testing.

My last column ended with a mention of smart tires. Most eyes reading this column are likely owned by people who already know what smart tires are; nevertheless, here is my version of smart tires 101. Firstly, the term ‘smart tires’ is about as precisely defined as a tire’s ‘capacity’, or ‘linearity’, by which I mean most people in the industry seem to roughly understand what it refers to, although actually the term can mean almost anything. That said, it usually centers around the emerging technology of adding various sensors into the tire, which feed data to the car. Smart tires are often associated with autonomous vehicles and those are often linked with electric drivetrains; although in fact none of these technologies are intrinsically linked and all can be used independently.

The basic idea of a smart tire is to mount an accelerometer to the innerliner. While the tire is rotating, this sensor detects a bump as it hits the ground at the front of the contact patch and then another bump as it leaves the ground at the end of the contact patch. With the speed of the car being known, the time between these bumps can be used to determine the distance, which is the length of the contact patch. Meanwhile, a TPMS sensor can be used to monitor the tire’s inflation pressure. Then a look-up table can be used (based on a known relationship between load, pressure and contact patch length) to determine the vertical load on that tire at that time. This is very useful information for the car’s active safety systems, which can use this for µ (grip) estimation, among many other things.

Furthermore, the accelerometer could be used to identify changes in the tire itself, such as the wheel and tire assembly suddenly becoming unbalanced. This could be used to alert the driver that a wheel weight has fallen off, or that the tire has picked up a nail, or similar.

Additionally, the smart tire could be used to communicate more general information to the car, such as how old the tire is, and to alert the driver if the tire is starting to perish. Or the tire could communicate to the car how good or otherwise its wet grip is likely to be, based on testing conducted prior to selling the tire.

With this information, the car could switch to an appropriate stability management setup that is suited to that particular tire. If the owner mounts a low-quality aftermarket tire, the car could switch to a more intrusive traction control system. If the owner then mounts a high-quality tire with more grip, the car could switch to a less intrusive system.

This is all well and good and lots of research is being conducted in this area. However, what I think is missing is the fact that smart tire technology could also be used in the engineering and design phase. Currently, we test tires on a rig and take measurements from the hub; these measurements are then used to parameterize tire models. Assuming a stiff wheel, this means we know everything that’s happening up to the wheel rim, but aside from temperature there is no information coming directly from the tire itself. This is not ideal as the tire is the very thing we are trying to measure.

Inspired by smart tires, high-quality multi-axis accelerometers could be mounted to the tire’s innerliner during rig testing. This will provide data as to exactly how the tire itself moves, vibrates and flexes while under known test conditions. With this new information, the tire’s stiffnesses, damping characteristics and other attributes could be calculated more accurately. Furthermore, additional parameters that are not currently available, such as the magnitude of the belt’s lateral movement while corning, could be measured.

With this new and more accurate information, comparisons between tires could be carried out more thoroughly. This additional data could also be used to improve the parameterization of physical and semi-physical tire models such as FTire, CDTire and RMOD-K, as well as being used in finite element models. Of course, the parameterization software and processes will need to be updated, but this information could significantly improve the accuracy of the resulting models. This sounds to me like the basis of a very interesting PhD proposal. Let me know if you’re interested…

Share. Twitter LinkedIn Facebook Email
Previous ArticleNovel sensor technologies
Next Article Hankook Motorsport season review 2017

Related Posts

Opinion

OPINION: Extending tire life with smarter tech – a new chapter for SUVs

2nd May 20255 Mins Read
Research & Development

Nexen Tire establishes winter tire testing center in Finland

11th April 20253 Mins Read
Testing & Analysis

Koala Technologies launches Te.Sense Bloom tire deflation testing solution in new markets

20th March 20254 Mins Read
Latest News

Uniroyal launches AllSeasonExpert 3 tire for rain, snow and dry roads

16th May 2025

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Z-Laser
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by