Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Opinion

The story of Ackermann steering

Joe WalterBy Joe Walter8th January 20214 Mins Read
Share LinkedIn Twitter Facebook Email

Pneumatic tires always roll with slip unless traveling straight ahead with their loaded rolling radius coinciding with their effective radius – an infrequent circumstance. Slippage in the contact patch is further exacerbated by vehicle braking, driving and/or cornering. Even tires rolling and turning at low speed on a dry surface will undergo overall longitudinal slip and lateral scrubbing coupled with individual tread element squirm. Such relative motion between tires and roads promotes tread wear. To help minimize unnecessary tire sliding during vehicle cornering, a four-bar linkage with an isosceles trapezoid planform, or Ackermann geometry, is generally used as the foundation for front-wheel steering control. Most road car steering is based on this layout; this also provides a symmetric response for both left- and right-hand turns.

The story of Ackermann steering begins with a rough sketch in an obscure note written by Erasmus Darwin (1731-1802) to James Watt (1736-1819) in 1767, depicting carriage wheels and axles. Darwin was an English physician with an interest in mechanical inventions (and best known today as the grandfather of Charles Darwin) and Watt was a well-known Scottish inventor. Recall that the Ackermann principle is based only on geometry: if the inside wheel on a front axle turns through a greater angle than the outside wheel, both wheels can be made to track around a common center determined solely by wheelbase and radius. On vehicles equipped with pneumatic tires, a common turn center minimizes tire scrub and steering effort. This concept, the kinematics of steering, was captured in Darwin’s sketch 253 years ago for a horse-drawn carriage featuring axletrees paired with wooden wheels – though Darwin did not secure a patent.

The idea was independently reinvented by Georg Lankensperger (1779-1847) in Munich almost a half-century later in 1816. Lankensperger was a wagon maker, wheelwright and inventor who built coaches and sleighs for the Bavarian court. Rudolph Ackermann (1764-1834), his German-born agent living in London, filed for a British patent (GB 4212) in 1818. Although Lankensperger was named as the inventor in the text, his contribution has been mostly forgotten.

The main drawback of pure Ackermann steering for today’s automobiles is that its premise is based on low-speed turning – quasistatic motion. Traversing a curve during moderate- or high-speed driving produces a centrifugal force that is balanced by a cornering force acting on each tire. These equilibrating forces cause the laterally flexible tires to generate increased slip angles. These angles, averaged at the front and rear, can be accommodated, with simplifying but reasonable assumptions, within an expanded ‘dynamic Ackermann’ equation. Importantly, the cornering-force-induced slip angles reduce turn radii and assist vehicle handling. Although not immediately self-evident, rear tires also steer via these angles – but passively.

Automobile steering mechanisms are generally designed to operate in the sector between low-speed Ackermann and parallel steer. Sports cars tend to be configured toward parallel steer while sedans tend toward pure Ackermann. Both vehicle platforms would normally have tire toe-in for stability. Race cars, on the other hand, might utilize parallel steer, or even reverse or anti-Ackermann, with toe-out for maximizing tire scrub and steering. The supposition follows: if steered wheels remain parallel during cornering, or operate with reverse Ackermann, the outside tire-wheel assembly, already more heavily loaded due to centrifugal force, would suffer additional lateral scrubbing, which would further improve handling. Rapid tread wear is the penalty. Conversely, vehicles featuring either rear-wheel steering systems (such as forklifts) or four-wheel steer are apt to remain relegated
to niche applications. Both steering modes tend toward oversteer at moderate to higher speeds, but operate well at low speeds when maneuverability is required.

Steering systems such as rack-and-pinion mechanisms conforming to variations in early four-bar trapezoidal linkages began in earnest with the development of motorized road transport, and improvements continue today. Rightfully or wrongfully, Ackermann’s name survives with these newer systems, not Darwin’s or Lankensperger’s – two centuries after publication of his eponymous British patent.

Share. Twitter LinkedIn Facebook Email
Previous ArticleMichelin to reduce French workforce in effort to increase competitiveness
Next Article Qingdao Sentury appoints Martin Winter as global technical director OE

Related Posts

Opinion

OPINION: Extending tire life with smarter tech – a new chapter for SUVs

2nd May 20255 Mins Read
Opinion

OPINION: EU regulations boost demand for tire-derived pyrolysis oil in chemical recycling

13th March 20255 Mins Read
Opinion

OPINION: Joe Walter recalls his first encounter with TTI

12th December 20235 Mins Read
Latest News

Uniroyal launches AllSeasonExpert 3 tire for rain, snow and dry roads

16th May 2025

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Allnex
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by