Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Opinion

Autonomous vehicle tires

Dean Tener, technical manager, Smithers Rapra tire testing centerBy Dean Tener, technical manager, Smithers Rapra tire testing center16th June 20165 Mins Read
Share LinkedIn Twitter Facebook Email

In 2004, the best performing autonomous car was only able to travel 7.5 miles. Now we are seeing incredible technology take the same roads as human-driven automobiles. While autonomous vehicles are not quite ready for public consumption, especially on a mass scale, they are advancing quickly enough for the automotive industry to start thinking about how to optimize tires for these self-driving cars.

The artificial intelligence systems aboard autonomous vehicles have dominated the conversation thus far, but the physical components of the vehicles are also vital to their success. The tires that are currently used on consumer and commercial vehicles are not necessarily the same tires that autonomous vehicles will require. The artificial intelligence in an autonomous vehicle, known as the controller, has far different expectations and needs than a human driver, and evaluation of vehicle components needs to be taken into account.

In the past, expert drivers evaluated tires based on ride and handling. As autonomous vehicles become more viable, evaluations will be conducted by controls system engineers, and factors such as subjective handling and steering will be of less importance. The feel of a tire on the road, or haptic feedback, is currently determined through vibrations in a steering wheel, but the lack of a steering wheel means that this feedback must be monitored and acted upon differently. Ride will still be important, as passengers will be able to feel the impact of the road on tires, but aerodynamics, durability and rolling resistance will be more heavily emphasized than before.

Decision-making in vehicles often depends on tires. For example, grip on the road can determine whether a driver chooses to stop or swerve to avoid an oncoming obstacle. These decisions cannot be made without a proper feel for a vehicle’s tires. This is why a tire limit estimation must be determined in testing, especially for autonomous vehicles. This data allows the controller in the vehicle to make a decision based on a tire limit prediction. Additional testing for tire limits on wet and dry surfaces needs to be conducted, so the controller can adjust its actions based on the traction of the surface. Tire sensors, which are in the concept stage, could help with traction concerns, but further testing on snow and ice would need to be completed to be sure the sensors would work in conditions that cover road markings and make driving especially difficult.

The controller needs to be aware not only of its own actions, but of the actions of surrounding vehicles as well. When driving in a line of vehicles, it is important to detect potential problems before they cause an accident. This is usually accomplished through haptic feedback, but the lack of a steering wheel can prevent detection through normal cues. Detection and accident prevention can be achieved via vehicle-to-vehicle communication, but limiting the occurrences of tire problems in the first place is the best course of action.

Tire durability is expected to continue to be an important factor for maintaining vehicle safety. There are two main tests for determining the durability of a tire. One measure is cleat impact testing, which subjects tires to rolling under high load on a straight surface and over obstacles. This will show how a tire withstands extreme impact and weight. The other measure of a tire is conducted through accelerated aging. Accelerated aging exposes the tire to high heat, pollutants and other factors that wear it down over time.

It is important to consider all the external elements that will affect a tire, but designing tires for autonomous vehicles will also depend on the structure of the vehicles themselves. They will likely be driven by an electric propulsion system, with a lightweight structure that is desirable for energy efficiency. Lightweight structures will put less weight on tires, but the tires will need to limit the force that is transmitted through them to the structure. If the tire is unable to absorb the punishing force created by driving on rough surfaces, the structural durability will be greatly affected.

Another factor that will influence what the tire of the future will look like is the impact of aerodynamics. A thinner tire will be more beneficial in limiting drag, but the tire will still require the same air cavity volume to achieve a suitable load capacity. This means that tires will need to be made taller to compensate. Increased tire diameter is generally better for ride, so it will not compromise the comfort of passengers.

Aside from diameter, the controller will need to be aware of other tire measurements, including cornering and braking stiffness, load transfer sensitivity, camber sensitivity and peak grip. Identifying these measurements through testing will make sure the controller is able to come up with quality initial steering and braking input. The measurements will also determine the controller’s compatibility with replacement tires.

As autonomous vehicles become standard, testing will be increasingly important in guiding the development of their components. Third party independent laboratories, like Smithers Rapra, are already conducting research to define the needs of these vehicles. Considering all the implications of an autonomous driving experience will better prepare manufacturers and laboratories as these vehicles move closer toward widespread availability.

Dean Tener is the technical manager of the Smithers Ravenna Laboratory, Smithers Rapra’s main center for tire testing in North America. With more than 30 years’ experience in tire research, design and testing, Tener brings a wealth of knowledge and has held positions at General Motors, Honda R&D Americas and Bridgestone/Firestone.

June 16, 2016

Share. Twitter LinkedIn Facebook Email
Previous ArticleGoodyear highlights the benefits of its Fuelmax truck tires
Next Article New biomass power plant to increase use of green energy at Nokian Tyres

Related Posts

Opinion

OPINION: Extending tire life with smarter tech – a new chapter for SUVs

2nd May 20255 Mins Read
Opinion

OPINION: EU regulations boost demand for tire-derived pyrolysis oil in chemical recycling

13th March 20255 Mins Read
Opinion

OPINION: Joe Walter recalls his first encounter with TTI

12th December 20235 Mins Read
Latest News

Uniroyal launches AllSeasonExpert 3 tire for rain, snow and dry roads

16th May 2025

USTMA welcomes move to overturn EPA’s revised NESHAP rules

13th May 2025

Bridgestone debuts 70% recycled and renewable demo tire

13th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Herrmann Ultraschall
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by