Tire Technology International
  • News
    • A-D
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
    • E-N
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
    • O-S
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
    • S-Z
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    • July 2023
    • March 2023
    • Annual Showcase 2022
    • November 2022
    • October 2022
    • 年国际轮胎技术年刊
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
LinkedIn Facebook
Subscribe
Tire Technology International
  • News
      • Appointments
      • Apps
      • Awards
      • Business
      • Certification
      • Components
      • Corporate Social Responsibility
      • Data management
      • Design
      • Distribution
      • Education
      • Factory logistics
      • Headquarters
      • Industry 4.0
      • Investments
      • Machine Vision & Inspection
      • Manufacturing Facilities
      • Materials
      • New tires
      • OE Fitments
      • Partnerships
      • People
      • Regulations
      • Research & Development
      • Retreading
      • Sales facilities
      • Show News
      • Simulation
      • Sustainability
      • Testing & Analysis
      • Tire Building
      • Tire handling
      • Tire Modeling & Digital Tools
      • Tire Recycling
      • TPMS & Electronics
  • Features
  • Online Magazines
    1. March/April 2025
    2. November 2024
    3. Annual Showcase 2024
    4. October 2024
    5. July 2024
    6. March 2024
    7. 年国际轮胎技术年刊
    8. Subscribe Free!
    Featured
    28th April 2025

    In this Issue – March/April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – March/April 2025

    28th April 2025

    In this Issue – November 2024

    11th December 2024

    In this Issue – Annual Showcase 2024

    21st November 2024
  • Opinion
  • Videos
  • Awards
    • Tire Technology International Awards 2025
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2020 Winners
    • Previous Winners
  • Supplier Spotlight
  • Events
LinkedIn Facebook
Subscribe
Tire Technology International
Opinion

How could tire weight be reduced?

Joe WalterBy Joe Walter31st March 20144 Mins Read
Share LinkedIn Twitter Facebook Email

From a design point of view, tires belong to that class of structures known as laminated fiber-reinforced composites. Other examples of such structures include rocket motor cases, aircraft parts and tennis rackets – but these entities tend to behave elastically while undergoing small deformations with geometries well suited to standard textbook calculations. Consider that the PCR tire is a load-bearing, pressurized torus reinforced with several thousand belt and body ply cords tailored to operate in tension; additionally, car tires undergo approximately 30 million fatigue cycles in 40,000 miles of service – which occasionally occur under non-optimal conditions of underinflation, overload and exceedingly high speed. Difficulties hindering precise predictive analyses of tread wear, fatigue limits and tire failure modes arise due to: finite rubber deformations; temperature- and frequency-dependent material properties; and spatially varying, multidimensional internal stresses.

The twofold purpose of the rubber matrix, from a structural engineering perspective, is to contain the air and transmit stress to the load-bearing tire cords. The tread, sidewall and other rubber components have unique and important functions, but load carrying is subordinate. Reinforcing carbon black and/or silica provide essential strength and stiffness to the rubbery matrix, but also cause hysteresis or internal friction – which is synonymous with energy loss and tire rolling resistance.

The circumferential and shear stiffness of the belt package, and not its ultimate strength, control the handling characteristics of the radial tire. Actually, belts tend to be over-designed for strength and rarely suffer, for example, burst failures. Belt stiffness is largely determined by the moduli and cross-sectional areas of the belt’s constituent cord-rubber components. Counterintuitively, cord angle variations in the range of commercial use are more important than cord modulus in contributing to belt properties. Also, the innocuous body ply material under the PCR belt forms an array of relatively rigid triangles that reinforces the tread region.

This process, known as triangulation, is well known to civil engineers and was recognized as such in the early radial tire patents of Michelin. These non-deforming triangles impart a many-fold stiffness increase to an otherwise compliant structure. If one removed the underlying body ply, the belt cords would pantograph as an assembly of non-rigid rhombuses, and such tires would behave as their bias ply counterparts. Because of more severe operational requirements for truck tires, triangulation is effected by means of three or more belt plies. Further triangulation is achieved in high-performance PCR tires via cap plies.

On the other hand, bead wire ultimate strength, and not stiffness, is the key design parameter for the wire bundle to bear inflation, centrifugal and other service loads – and especially so for resisting burst failures. The individual strands of small-diameter, high-tensile wire provide the bead with flexibility for mounting and the structural integrity to support body ply and turn-up ply cord tension. The adroit manipulation of bead filler height and hardness is used to promote either tire ride or handling, as needed. Overall body ply compliance is important for ride quality, and is largely controlled by cord twist, while ply cord strength controls sidewall impact and burst resistance.

Strength-to-weight and stiffness-to-weight ratios are commonly used aerospace design metrics that indicate the effectiveness of fiber reinforcements in structural applications where reduced weight, irrespective of cost, is important. These parameters are known as specific strength and specific modulus, respectively. Traditionally, aramids have the highest specific strength of any organic or inorganic fiber, while boron and graphite have the highest specific stiffness or modulus. In tire fabric terminology, the equivalent strength metric is known as tenacity – measured in grams per denier (gpd). Don’t be surprised that on this basis, cotton is just as strong as steel at 3.4gpd. Interestingly, the strongest fiber per unit weight known today (40% higher than aramid) is an ultra-high molecular weight polyethylene known commercially as Dyneema, but it is not suitable for use in tires due to its relatively low melting point (130°C). Just as power-to-weight ratios are important in future designs of jet engines and race cars, full exploitation of the specific strength and modulus potential of fibers currently available or yet to be developed could lead to meaningful reductions in tire weight – constrained, of course, by cost considerations.

Share. Twitter LinkedIn Facebook Email
Previous ArticleTire trends in 2014
Next Article Vehicle OEMs at the Tire Technology Conference

Related Posts

Opinion

OPINION: Extending tire life with smarter tech – a new chapter for SUVs

2nd May 20255 Mins Read
Opinion

OPINION: EU regulations boost demand for tire-derived pyrolysis oil in chemical recycling

13th March 20255 Mins Read
Opinion

OPINION: Joe Walter recalls his first encounter with TTI

12th December 20235 Mins Read
Latest News

New construction tire coming from Michelin

20th May 2025

Enso appoints Dominic Clark as MD

19th May 2025

Pirelli C6 compound debuts in Imola

19th May 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • SAFE – RUN MACHINERY (SUZHOU) CO. LTD.
Getting in Touch
  • Contact Us
  • Meet The Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Autonomous Vehicle
  • Automotive Powertrain
  • Professional Motorsport
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checkbox-necessary1 yearSet by the GDPR Cookie Consent plugin, this cookie records the user consent for the cookies in the "Necessary" category.
elementorneverThe website's WordPress theme uses this cookie. It allows the website owner to implement or change the website's content in real-time.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

CookieDurationDescription
OAGEOsessionOpenX sets this cookie to avoid the repeated display of the same ad.
OAID1 yearCookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie15 minutesdoubleclick.net sets this cookie to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysYouTube sets this cookie to measure bandwidth, determining whether the user gets the new or old player interface.
YSCsessionYoutube sets this cookie to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt-remote-device-idneverYouTube sets this cookie to store the user's video preferences using embedded YouTube videos.
yt.innertube::nextIdneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverYouTube sets this cookie to register a unique ID to store data on what videos from YouTube the user has seen.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDurationDescription
CONSENT2 yearsYouTube sets this cookie via embedded YouTube videos and registers anonymous statistical data.
_ga1 year 1 month 4 daysGoogle Analytics sets this cookie to calculate visitor, session and campaign data and track site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognise unique visitors.
_ga_*1 year 1 month 4 daysGoogle Analytics sets this cookie to store and count page views.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

CookieDurationDescription
__cf_bm30 minutesCloudflare set the cookie to support Cloudflare Bot Management.

SAVE & ACCEPT
Powered by